Single-image far-field subdiffraction limit imaging with axicon.
نویسندگان
چکیده
This Letter presents a technique for subdiffraction limit imaging termed Bessel beam microscopy (BBM). By placing a lens in series with an axicon in the optical path of a microscope, the diffraction-limited resolution of the base microscope is improved by one third. This improvement is demonstrated experimentally by resolving individual subdiffraction limit fluorescent beads in a close-pack arrangement. The behavior of the BBM system is explored using angular diffraction simulations, demonstrating the possibility of resolving features spaced as little as 110 nm apart when viewed with a 100×1.4 NA objective. Unique among super-resolution techniques, BBM acquires subdiffraction limit information in a single image with broadband unstructured illumination using only static geometric optics placed between the microscope and camera.
منابع مشابه
Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations
Here we suggest and explore theoretically an idea for a far-field scanless optical microscopy with a subdiffraction resolution. We exploit the special dispersion characteristics of an anisotropic metamaterial crystal that is obliquely cut at its output plane, or has a curved output surface, in order to map the input field distribution onto the crystal’s output surface with a compressed angular ...
متن کاملFar-field optical imaging with subdiffraction resolution enabled by nonlinear saturation absorption
The resolution of far-field optical imaging is required to improve beyond the Abbe limit to the subdiffraction or even the nanoscale. In this work, inspired by scanning electronic microscopy (SEM) imaging, in which carbon (or Au) thin films are usually required to be coated on the sample surface before imaging to remove the charging effect while imaging by electrons. We propose a saturation-abs...
متن کاملSubdiffraction resolution in far-field fluorescence microscopy.
We overcame the resolution limit of scanning far-field fluorescence microscopy by disabling the fluorescence from the outer part of the focal spot. Whereas a near-UV pulse generates a diffraction-limited distribution of excited molecules, a spatially offset pulse quenches the excited molecules from the outer part of the focus through stimulated emission. This results in a subdiffraction-sized e...
متن کاملDesign, fabrication and characterization of a Far-field Superlens
The fabrication process as well as the optical characterization of a Far-field Superlens (FSL) is presented in detail. A FSL is capable of optically imaging well below the diffraction limit and works by enhancing and scattering evanescent waves to the far field which is then used to numerically reconstruct the object image [S. Durant, J. Opt. Soc. Am. B. 23(2006) 2383; Z. Liu, S. Durant, H. Lee...
متن کاملFar-field autofluorescence nanoscopy.
We demonstrate far-field optical imaging at the nanoscale with unlabeled samples. Subdiffraction resolution images of autofluorescent samples are obtained by depleting the ground state of natural fluorophores by transferring them to a metastable dark state and simultaneously localizing those fluorophores that are transiently returning. Our approach is based on the insight that nanoscopy methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 38 5 شماره
صفحات -
تاریخ انتشار 2013